복소해석학의 이해(제2판)  
지은이 양영오  
 
 
2009년 08월 17일 출간
354쪽 | B5
ISBN 9788963640167
정가 15,000원
   
도서구매
 
eBOOK
   
   
 
 
 
머리말

수학은 자연과학, 공학, 경제학, 경영학 등 다양한 분야에 크게 응용되고 있다. 복소해석학은 수학의 여러 분야 중 가장 중요한 핵심 분야로 이론 전개가 다소 쉽고, 기본 내용과 응용을 쉽게 이해하고 익힐 수 있는 대학 표준 교재가 필요한 실정이었다.

이 책은 전국 대학교 학부과정에서 가르치고 있는 복소해석학의 공통 내용을 바탕으로 내용이 알차게 구성된 입문서로, 대학 1학년의 미적분학을 이수한 학생은 누구나 어려움 없이 기초 개념과 내용을 이해하기 쉽도록 체계적으로 저술되었다. 또한 새로운 개념이 소개되면 그 개념을 정확히 파악할 수 있도록 자세하게 설명하고 많은 보기의 풀이를 알기 쉽게 제시하였고 정리의 증명은 가능한 상세하게 설명하고자 노력하였다. 특히 각 절마다 연습문제들(수학교사 임용고시 출제문제 포함)이 다양하게 제시되어 본문의 내용을 이해하였다면 풀 수 있는 매우 기본적이고 핵심적인 문제들이고, 아울러 본문에서 다루지 못한 내용을 보충하는 문제들도 있다. 학생들이 어려움을 느끼지 않도록 이들 문제에 대한 답이나 풀이 과정과 증명을 책 마지막에 자세하게 제시하였다.

“기하학(수학)에는 왕도가 없다(왕의 질문에 대한 유클리드의 대답)”, “세상에는 공짜는 없다”라는 명언이 암시하는 바와 같이, 이 책으로 공부하는 학생은 책 마지막에 제시하는 연습문제의 답이나 풀이 과정을 보지 말고 스스로 풀어 보는 것이 중요하다. 이는 곧 수학적 문제해결력을 창의적으로 신장하는 걸음이고 디딤돌이다. 이런 점에서 수학과 학생뿐만 아니라 공학 등을 공부하는 학생, 특히 중등수학교원 임용고시를 준비하는 학생들에게 큰 도움이 되는 복소해석학의 좋은 지침서가 되리라 본다.

이 책을 출판함에 있어서 저자의 역부족으로 이론이나 증명에 미비한 점은 있을 것으로 생각되며, 저자는 부족한 점을 계속 보완하여 발전시키고자 한다. 복소해석학의 기본 이론을 공부하는 젊은 모든 학생들에게 이 책이 조금이나마 도움이 된다면 저자로서는 매우 큰 기쁨과 보람이 되겠다.

끝으로 이 책의 내용을 입력하는 데 아낌없이 도와준 수학과 이금란, 정민주, 나연정 조교와 오혜경 학생, 세심하게 교정하여 준 강경태 박사, 그리고 표지를 예쁘게 디자인하여 준 디자이너 정진숙 선생님께 깊은 감사를 드린다. 아울러 이 책을 출판하는 데 수고를 해주신 청문각 김홍석 회장님께도 심심한 사의를 표한다.

2009년 8월
저 자
 
 
 
1장 복소수
1.1 복소수의 정의 / 1
1.2 극좌표의 표현 / 10
1.3 멱과 제곱근 / 16
1.4 복소평면의 영역 / 20
1.5 복소수의 수열 / 26
1.6 무한원점과 입체사영 / 30

2장 복소함수
2.1 극한과 연속 / 35
2.2 컴팩트성과 연속성 / 46
2.3 도함수 / 55
2.4 코시-리만 방정식 / 59
2.5 조화함수 / 70

3 장 초등함수
3.1 지수함수 / 75
3.2 삼각함수와 쌍곡선 함수 / 79
3.3 로그함수 / 87
3.4 복소수 지수와 역삼각함수 / 94

4장 멱급수
4.1 급수의 수렴 / 99
4.2 고른 수렴 / 105
4.3 테일러 급수 / 111
4.4 멱급수의 연산 / 121

5장 복소 적분
5.1 곡선과 복소 적분 / 129
5.2 그린의 정리와 코시의 적분정리 / 139

6 장 코시의 적분공식
6.1 코시의 적분공식 / 155
6.2 코시의 부등식과 응용 / 172
6.3 최대 절대값 정리 / 181
6.4 편각원리 / 189

7장 로랑 급수와 유수 이론
7.1 특이점 / 199
7.2 로랑 급수 / 207
7.3 유수 정리 / 215
7.4 정적분의 계산 / 223

8장 등각사상과 조화함수
8.1 선형 분수 변환 / 243
8.2 초등함수에 의한 사상 / 254
8.3 등각사상 / 260
8.4 조화함수 / 267
8.5 푸아송 적분공식 / 274
8.6 하낙의 원리 / 286